

Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Weschnitz (Hessen) 2024

Vorgelegt von Dr. Jörg Schneider & Timo Seufert Bürogemeinschaft für fisch- und gewässerökologische Studien -BFS Frankfurt

Homburger Str. 36 60486 Frankfurt am Main bfs-schneider@web.de www.lachsprojekt.de

Frankfurt am Main Dezember 2024

INHALT

1. Einleitung	3
2. Untersuchungsgewässer und Methoden	10
2.1 Charakterisierung der Weschnitz	10
2.2 Gewässerstrecken	11
3. Besatzmaßnahmen	16
3.1 Besatz 2013	16
3.2 Besatz 2019	16
3.3 Besatz 2020	17
3.4 Besatz 2021	18
3.5 Besatz 2022	19
3.6 Besatz 2024	20
4. Ergebnisse Erfolgskontrollen	21
4.1 Befischungen 2013	21
4.2 Befischungen 2019	23
4.3 Befischungen 2020	24
4.4 Befischungen 2021	25
4.5 Befischungen 2022	27
5. Zusammenfassung und Empfehlungen	28
3. Besatzmaßnahmen 3.1 Besatz 2013 3.2 Besatz 2019 3.3 Besatz 2020 3.4 Besatz 2021 3.5 Besatz 2022 3.6 Besatz 2024 4. Ergebnisse Erfolgskontrollen 4.1 Befischungen 2013 4.2 Befischungen 2019 4.3 Befischungen 2020 4.4 Befischungen 2021 4.5 Befischungen 2022 5. Zusammenfassung und Empfehlungen 6. Elternfischhaltung 7. Zitierte und verwendete Literatur	31
7. Zitierte und verwendete Literatur	32
Anhang	42 ff

1. Einleitung

Nachdem seit "etlichen" Jahren (ca. Jahr 2000) ohne vorangegangene Besatzmaßnahmen nahezu jährlich in der gefangen Weschnitz Großsalmoniden werden, publizierten HENNINGS & ARNOLD (2012) das regelmäßige Auftreten der Großsalmoniden sowie den letzten (an den ASV Lorsch-Einhausen gemeldeten) Fang einer "Meerforelle" von 72 cm Länge. Der Fisch war am 3.10.2011 in Lorsch mit der Fliegenrute gefangen, fotografiert und zurückgesetzt worden (Fänger: Axel FALKENAUER). Nach Vorlage zweier Belegfotos wurde der Großsalmonide durch das BFS Frankfurt eindeutig als weiblicher Lachs identifiziert (Abb. 1).

Abb. 1: Lachsstreuner aus der Weschnitz, 3.10.2011 (Fotos: A. FALKENAUER).

In einer im Jahr 2012 im Auftrag des Landes Hessen angefertigten "Eignungsprüfung der hessischen Weschnitz für eine Wiederansiedlung des Atlantischen Lachses (Salmo salar)" sollte im Kontext des hessischen Engagements im Rahmen des laufenden Wanderfisch-Lachs 2020 programms der Internationalen Kommission zum Schutz des Rheins (IKSR) überprüft werden, ob die Weschnitz historisches ein Lachsgewässer war und ob das Gewässer bei bestätigter historischer Besiedlung heute noch für eine Wiederansiedlung potenziell geeignet ist bzw. welche prioritären für Maßnahmen spezifisch die Habitatentwicklung zu Gunsten des Lachses formuliert werden können.

Zur Bewertung der Weschnitz als potenzielles Lachsgewässer wurden folgende Arbeitsschritte festgelegt:

- Auswertung vorhandener Daten
 (historische Daten,
 Grunddatenerfassung für das FFH Gebiet 6318-307 "Oberlauf der
 Weschnitz und Nebenbäche",
 Umsetzungsplan
 Wasserrahmenrichtlinie des
 Gewässerverbandes Bergstraße,
 Ergebnisse WRRL-Befischungen,
 Daten Strukturgütekartierung).
- Überprüfung von ausgewählten, repräsentativen Gewässerabschnitten

hinsichtlich Hydrologie, Gewässerdimension, Laichmöglichkeiten und Jungfischhabitatqualität sowie Vorhandensein eines reproduktiven Forellenbestandes:

 schließlich, sofern die Ergebnisse der vorstehend genannten Prüfungsschritte positiv ausfallen, sollten Aussagen zum Stand der linearen Durchgängigkeit und Bewertung der Barrierewirkung existierender Wanderhindernisse getroffen werden.

Die Eignungsprüfung¹ kam zu folgenden Ergebnissen:

Flächen und mögliche Populationsgröße

Der Atlantische Lachs zählt (wie die Meerforelle) mit hoher Wahrscheinlichkeit zum ursprünglichen Arteninventar der Weschnitz. Die vorliegende Studie dokumentiert, dass zwischen Birkenau und Lörzenbach-Fahrenbach heute noch rund 40% der 11 km langen Strecke geeignete strukturelle Vorraussetzungen für ein Aufwachsen juveniler Lachse der AK 0+ bieten und ca. 80% der Strecke als Habitat für ältere Stadien geeignet ist.

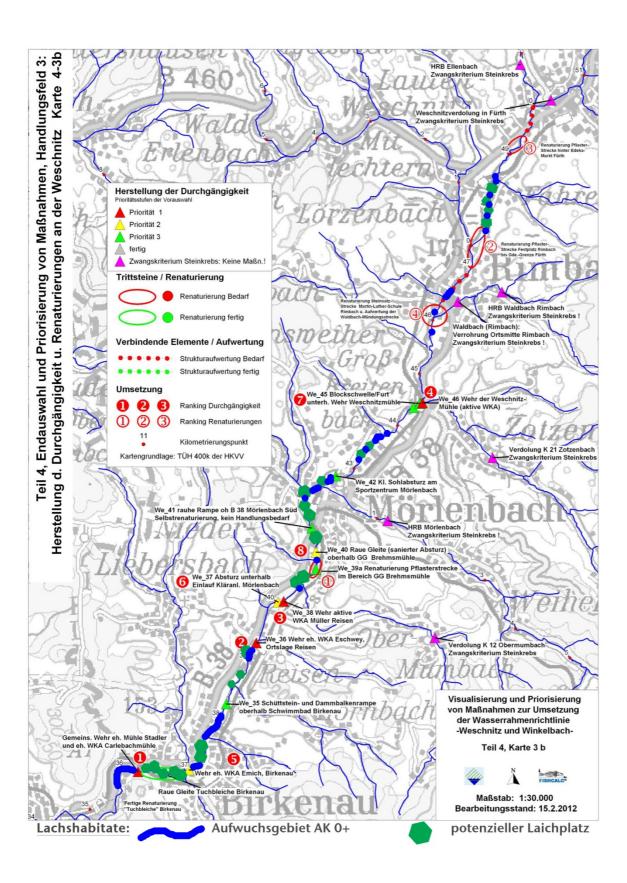
Bei einer mittleren Gewässerbreite von ca. 5 m und 11.000 m Lauflänge ergeben sich rechnerisch rund 22.000 m² bzw. 2,2 ha

Aufwuchsgebiet für die Altersklasse 0+ und rund 44.000 m² bzw. 4,4 ha Aufwuchsgebiet für ältere Lachse. Die Anzahl potenzieller Laichplätze beläuft sich auf rund 35 bis 40 Lokalitäten. Die Anzahl an Laichplätzen und die Ausdehnung der Junglachshabitate (AK 0+) kann im Rahmen von Renaturierungen nochmals deutlich erhöht werden. [vgl. Abb. 2]

Bei Sömmerlingsbesatz (AK 0+) kann ein Individuum pro m² Auswuchshabitat als geeignete Besatzdichte angesetzt werden (mögliche Besatzzahl 20.000 bis 25.000 Sömmerlinge). Rund 2,2 ha verfügbare Habitatfläche (aktueller Stand) lassen eine jährliche Smoltproduktion von ca. 2.200 Individuen zu. Bei einer Rückkehrerrate von (aktuell im Rhein) ca. 1% entspräche dies 22 adulten Rückkehrern pro Jahr. Für das Rheinsystem wird jedoch Management-Ziel eine Rückkehrrate von 3% für eine langfristig stabile, expandierende Population angestrebt (SCHNEIDER 2009b). Für die Weser geben THIEL 2,75% & MAGATH (2011)Rückkehrerrate für den Selbsterhalt zukünftiger Populationen an. Wird dieser Wert als Grundlage für Berechnungen genutzt, können in der Weschnitz mit den vorliegenden Habitaten rund 60 Rückkehrer pro Jahr angesetzt werden. Dabei ist zu beachten, dass sich die

(Salmo salar). - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 33 S.

Schneider, J. (2012): Eignungsprüfung der hessischen Weschnitz für eine Wiederansiedlung des Atlantischen Lachses


Anzahl tatsächlich benötigter Rückkehrer verändern kann:

- durch genetischen Austausch zwischen räumlich nah benachbarten Populationen sowie Teilnahme von frühreifen Parrs am Laichgeschäft wird die effektive Populationsgröße erhöht, sodass die benötige Mindestanzahl an Rückkehrern niedriger ausfallen kann;
- bei einem hohen Anteil an weiblichen MSW-Fischen kann die benötigte Anzahl von Rückkehrern (aufgrund der höheren relativen Eizahl/kg Körpergewicht) geringer ausfallen;
- umgekehrt kann bei hohem GrilseAnteil und einem eher ausgeglichenem
 Geschlechterverhältnis eine höhere
 Anzahl an Rückkehrern für den
 Bestandserhalt notwendig sein.

Nach Ansicht Genetikern von qilt statistisch effektive gesehen eine Populationsgröße von N_e = 50 bis 100 Tieren (50% Rogner, 50% Milchner) für kurze Zeiträume als kritischer Wert. Unterhalb dieser Grenze ist das Auftreten Inzuchtdepression wahrscheinlich (NIELSEN et al. 2001; CONSUEGRA et al. 2005). Auf einen längeren Zeitraum bezogen ist eine effektive Populationsgröße von N_e = 500 pro Sub-Population notwendig, um einen stabilen Genpool zu erhalten. Beim Atlantischen Lachs stellen Rogner den limitierenden Faktor dar, da sie üblicherweise aufgrund der Häufigkeit frühreifer Männchen die anteilsschwächere Gruppe ausmachen. Da sich die Reproduktion einer Generation über einen Zeitraum von 3-5 Jahren erstreckt, sind rechnerisch 100 – 167 "effektive Elternfische" pro Jahr für eine stabile Population von N_e = 500 Tieren notwendig.

Die Bestätigung solchen einer Mindestpopulationsgröße in der Praxis steht jedoch noch aus. Viele vitale kleine Populationen weisen deutlich geringere Rückkehrerzahlen auf, als "genetisch notwendig" ist. Ein wichtiger Faktor ist hier der Austausch genetischen Materials mit anderen Subpopulationen. Durch Einwanderung effektiver Streuner aus Nachbarpopulationen (wie beispielweise anderen Rheinzuflüssen) können kleine Populationen offenbar erheblich stabilisiert werden. Auch sind Zweifel angebracht, ob kleine Lachspopulationen tatsächlich den geschilderten bottle-neck-Gefahren in der geschilderten Weise ausgesetzt sind.

Zusammenfassend kann konstatiert werden. dass ein Lachs-Wiederansiedlungsprojekt in der Weschnitz gute Chancen auf einen stabilen Populationsaufbau hat - insbesondere dann, wenn mittels Strukturverbesserungen und Renaturierungen die Anteile geeigneter Flächen im hessischen Mittellauf erhöht würden.

Abb. 2: Laich- und Aufwuchshabitate für den Lachs im Mittellauf der Weschnitz gemäß Begehung/Kartierung 2012 (BFS) (Legende siehe Karte, unten). [Kartengrundlage aus: HENNINGS (2012) "Visualisierung und Priorisierung von Maßnahmen zur Umsetzung der Europäischen Wasserrahmenrichtlinie in den Einzugsgebieten von Weschnitz und Winkelbach - Teil 4: Konkretisierung von Maßnahmen und abschließende Auswahl bzw. Priorisierung "].

Zur Überprüfung der Chancen einer Einnischung und erfolgreichen Ressourcennutzung durch Lachse wurde ein Testbesatz mit einer kleinen Zahl an Sömmerlingen empfohlen. Die Fische sollten aus der rheinland-pfälzisch hessischen Elternfischhaltung im Lachszentrum Talsperre Hasper bei Hagen abstammen (ursprünglich Herkunft Ätran). Der Besatzerfolg sollte über eine Erfolgskontrolle dokumentiert werden.

In der Eignungsprüfung wurden folgende Habitatmaßnahmen empfohlen:

Aktuelle Nachweise von anadromen Großsalmoniden im Unterlauf (HENNINGS & ARNOLD, 2012) indizieren, dass die Weschnitz trotz des massiven Verbaus im Unterlauf in der Rheinebene Wanderkorridor geeignet ist und von Aufsteigern genutzt wird. Der kanalisierte und verbaute Unterlauf der Weschnitz bietet bis auf wenige kleinräumige Abschnitte unterhalb Weinheim (Baden-Württemberg) keine Laich-Aufwuchshabitate für Großsalmoniden. Die Attraktivität der im hessischen Abschnitt frei passierbaren Strecke als Wanderkorridor sollte durch strukturverbessernde Maßnahmen zur Erhöhung des Deckungsangebotes aufgewertet werden.

Der daran stromaufwärts anschließende, in Baden gelegene Mittellauf ist aufgrund intensiver Wasserkraftnutzung an vier Kleinwasserkraftanlagen (Ausleitungskraftwerke) mit teils völlig unzureichender Mindestwasserabgabe derzeit absolut unpassierbar. Der hierdurch vom Rhein "abgeschnittene" hessische Mittellauf weist bereits heute sowohl hinsichtlich Wasserführung als auch hinsichtlich Breite, Gefälle, Strömungsverhältnissen und Substratbeschaffenheit gut geeignete Teilstrecken auf. Diese Teilstrecken liegen zwischen der Landesgrenze bei Birkenau bis Fahrenbach oberhalb Rimbach. Dieser Abschnitt entspricht dem potenziellen Projektgebiet (Eignung grundsätzlich gegeben). Derzeit sind rund 40% der Strecke gut geeignet (kleinräumig auch sehr gut).

Die positive Bewertung der Eignung wird durch das Vorkommen eines reproduktiven Bachforellenbestandes in der favorisierten Gewässerstrecke gestützt.

Bei einer Umsetzung der in HENNINGS aufgeführten prioritären (2012)Maßnahmen ließe sich die geeignete Gewässerstrecke zwischen der Landesgrenze bei Birkenau bis Fahrenbach nochmals deutlich erweitern (auf dann ca. 80%). Zudem ließen sich Einzelstrecken auch besonders zu hochwertigen Laichund Jungfischhabitaten entwickeln, wie sie sich beispielsweise nach der Renaturierung eines Teilstücks bei Birkenau ("Tuchbleiche") bereits eingestellt haben.

Die sechs hessischen Wehrstandorte (davon zwei WKA) sollten zeitnah durchgängig gestaltet werden.

Die Wehre Carlebachmühle ehemalige WKA Emich (beide Birkenau) sowie ehemalige WKA Eschwey (Reisen) sind ohne Wasserkraftnutzung. Die Wehre Carlebachmühle und ehemalige WKA Eschwey können vermutlich zumindest teilweise rückgebaut werden. Durch die Stauabsenkung würden weitere Aufwuchshabitate und ggf. auch zusätzliche Laichareale entstehen. Das Wehr Emich kann wahrscheinlich aufgrund der angrenzenden Bebauung (inkl. Brücke) aus statischen Gründen nicht oder nur geringfügig abgesenkt werden, jedoch in eine naturnahe Sohlengleite umgebaut werden.

Der Weschnitzmühle mit besonders intensiver Wasserkraftnutzung und einer völlig ungenügenden Mindestwasserdotation kommt eine besondere Bedeutung zu, da sie wertvolle Habitate unterhalb Fahrenbach unzugänglich macht. Die unterhalb gelegene WKA Müller in Reisen entnimmt anteilig weniger Wasser als die Weschnitzmühle, ist jedoch ebenfalls unpassierbar.

Ein weiterer wesentlicher Faktor ist die Schaffung sicherer Abwanderkorridore für die Smolts. Smolts (und andere Fische vergleichbarer Größe) sind in starkem Maße durch Turbinen bedroht und erleiden häufig Verluste von 20% und mehr pro Standort. Gegenwärtig scheint an keiner der an der Weschnitz operierenden Wasserkraftanlagen ein Feinrechen mit einem für Lachssmolts und Meerforellensmolts notwendigen engen Rechenstababstand von ≤ 10 mm zu bestehen.

Die <u>Priorisierung</u> <u>der notwendigen</u> <u>Renaturierungs- und Wehrumgestaltungs-maßnahmen</u> ist HENNINGS (2012) zu entnehmen. Sie entspricht auch den Anforderungen an die Umsetzung eines Lachswiederansiedlungsprojektes.

Da die Möglichkeit der Wiederansiedlung des Lachses sowie die natürliche Wiederbesiedlung durch die Meerforelle von einer Öffnung des in Baden gelegenen Wanderkorridors abhängig sind, bilateral empfohlen, zunächst einen Zeitplan zur Entwicklung des Wanderfischgewässers Weschnitz zu entwickeln.

Die letzte Studie aus dem Jahr 2013 fasste die Ergebnisse einer im Herbst 2013 durchgeführten Erfolgskontrolle nach einer ersten, im Sommer 2013 getätigten Lachs-Besatzmaßnahme ("Testbesatz") zusammen. Besetzt worden waren vier unterschiedlich strukturierte Teilstrecken zwischen Birkenau und Rimbach. Als 4.500 Besatzfische wurden rund halbjährige Lachsparrs ("Sömmerlinge") aus dem Lachszentrum Hasper Talsperre bezogen.

Die Ergebnisse der vorgenommenen Erfolgskontrolle der Besatzmaßnahme 2013 zeigten auf, dass:

- die Weschnitz über sehr gut geeignete Aufwuchshabitate verfügt
- die Einnischung von Lachs-Sömmerlingen in allen repräsentativen Teststrecken möglich ist
- hohe bis sehr hohe Dichten erreicht werden können
- ausgesprochen gute Wachstumsleistungen zu erzielen sind.

Zusammenlegung der Alten und Neuen Weschnitz

Zwischen Juni 2017 und April 2018 wurde die untere Weschnitz auf rund drei Kilometer mittels einer Zusammenlegung der Arme "Alte Weschnitz" und "Neue Weschnitz" renaturiert. Die beiden bisherigen Weschnitz-Arme wurden dabei Mitte zu einem neuen. unbegradigten Gewässerlauf vereinigt; die Arme selbst werden nach dem Durchstich von der weiteren Wasserversorgung abgeschnitten. Auf rund 80 Hektar entstand so innerhalb des heutigen Polders Losch eine Flussaue Grünland, in der sich die Weschnitz frei entfalten kann. Durch die Renaturierung soll zum einen der Gewässerzustand besser werden. Zum anderen sollen die Bedingungen für Fauna und Flora im Schutzgebiet verbessert werden. Das Land Hessen stellt für den Bau über drei Millionen Euro zur Verfügung.

Weiterführung Lachs 2020

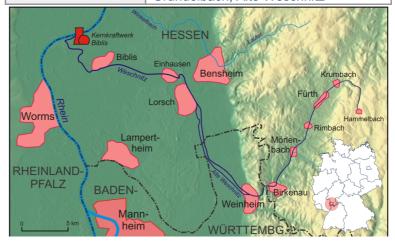
In 2019 wurde durch das BFS unter Mitwirkung der Hegegemeinschaft zunächst eine Reproduktionskontrolle durchgeführt, mit der geklärt werden sollte, ob es in der neuen Gewässer-strecke im Bereich Weschnitzinsel – die durch Kolke, Gleiten und einige kiesige Rauschenstrecken charakterisiert ist bereits zu einer Naturvermehrung durch Lachse gekommen ist. In einem weiteren Schritt wurde im Sommer 2019 an fünf Lokalitäten im Bereich der Weschnitzinsel eine Besatzmaßnahme mit insgesamt 2.000 Lachsen der Altersklasse durchgeführt.

In 2020 und 2021 wurden die Besatzmaßnahmen mit atlantischen Lachsen weitergeführt. Insgesamt wurden 1.200 bzw. 1.110 Sömmerlinge (AK 0+) jeweils an zwei Besatzstellen (wie 2019) in der renaturierten Weschnitz (Weschnitzinsel) ausgesetzt. In 2022 wurden 800 Sommerparrs der ΑK 0+ in der renaturierten Strecke im Ortsbereich Einhausen westlich der A 67 ausgesetzt. In 2023 erfolgte kein Besatz in der Weschnitz. Im Jahr 2024 wurden erstmalig Smolts (AK 1) eingesetzt. Der Besatz erfolgte am Kiesdepot im Bereich des Friedhof Süd in Einhausen.

2. Untersuchungsgewässer und Methoden

2.1 Charakterisierung der Weschnitz

Die Weschnitz ist ein 58,9 Kilometer langer, rechter Nebenfluss des Rheins im Süden Hessens und Norden Baden-


Württembergs. Die Weschnitz entwässert ein Einzugsgebiet von 436 km². Sie entspringt bei Hammelbach im Odenwald und mündet bei Biblis in den Rhein (vgl. Tab. 1).

Das Gewässer ist in drei morphologisch deutlich unterschiedliche Zonen gegliedert:

- a) dem gefällereichen und durch diverse kleinere Zuflüsse gekennzeichneten Einzugsgebiet der oberen und mittleren Weschnitz im Mittelgebirge des westlichen Odenwaldes;
- b) einem relativ kurzen, in Baden-Württemberg gelegenen steilen Teilstück am Berghang des Odenwaldes;
- c) und dem durch geringes
 Gefälle geprägten, technisch ausgebauten Unterlauf in der Rheinebene.

Nach HENNINGS (2012) sind im Mittelgebirgsverlauf im Haupt-lauf Fischregionen von der Quellregion bei Hammelbach bis zur Äschenregion zwischen Rimbach und der Landesgrenze am Mittelgebirgsabfall bei Weinheim anzutreffen. Die kleineren Seitenbäche zählen zur oberen Forellenregion (Epi-Seitenbäche, Rhithral), größere Schlierbach, Lörzenbach, Mörlenbach und Grundelbach können jeweiligen im Unterlauf der unteren Forellenregion (Meta-Rhithral) zugerechnet werden.

	many Eugere						
Tab. 1: Gewässerdate	en Weschnitz (C	Quelle: Wikipedia)					
Gewässerkennzahl	DE: 2394						
Lage	Deutschland, Württemberg	Hessen, Baden-					
Flusssystem	Rhein						
Abfluss über	Rhein → Nord	dsee					
Quelle	Weschnitz-Quelle nördlich von Grasellenbach-Hammelbach im hessischen Odenwald 49° 38′ 22,4″ N, 8° 49′ 43,1″ O						
Quellhöhe	455 m ü. NN						
Mündung	beim Kernkraftwerk Biblis in den Rhein Koordinaten: 49° 42′ 39″ N, 8° 24′ 16″ O (Karte) 49° 42′ 39″ N, 8° 24′ 16″ O						
Mündungshöhe	84,9 m ü. NN						
Höhenunterschied	370,1 m						
Länge	58,9 km						
Einzugsgebiet	435,725 km ²						
Abfluss	MNQ MQ	1,2904 m³/s 3,5843 m³/s					
Rechte Nebenflüsse	Krumbach, Schlierbach, Linnenbach, Wiesentalbach, Ederbach, Liebersbach, Stadtbach, Neuer Graben						
Linke Nebenflüsse	Kröckelbach, Steinbach, Zotzenbach, Weschnitzmühlenkanal, Mörlenbach, Mumbach, Schimbach, Hornbach, Grambach, Kallstädter Bach, Grundelbach, Alte Weschnitz						

Der in der Rheinebene gelegene Unterlauf wird seit der Reformationszeit (circa 1535) aus Gründen des Hochwasserschutzes ab Weinheim als Alte und Neue Weschnitz um die sog. "Weschnitzinsel" in zwei getrennten Vorflutern bis zur Wiedervereinigung bei Lorsch geführt (HENNINGS, 2012). Im 20. Jahrhundert gesamte Unterlauf der Weschnitz kanalartig ausgebaut "endbegradigt". Mit der Renaturierung 2017-2018 entstand auf rund Kilometern ein neues, naturnahes Gerinne (Abb. 7 & 8).

2.2 Gewässerstrecken

Besatz- und Befischungsstrecken 2013

Die Besatz- und Befischungsstrecken im Jahr 2013 befinden sich in Birkenau an der Tuchbleiche ab Sohlengleite (unterer Ortsausgang, Wz Bi 1) bis zur Brücke oberhalb der an der **Tuchbleiche** (Wz Bi gelegenen Schule Mörlenbach zwischen Lehwiese (Wz Mö 1) und Zufluss Bonsweiherer Bach (Wz Mö 2) und in Rimbach auf Höhe der Martin-Luther-Schule (Wz Ri 1). Mit der Auswahl wurden drei repräsentative Abschnitte der Weschnitz ausgewählt, die auch die drei größten zusammenhängenden geeigneten Besatz-Aufwuchsstrecken abdecken (vgl. Karte in Abb. 2 sowie Abb. 3 - 6).

Abb. 3: Weschnitz bei Birkenau, Besatzstrecke Wz_Bi 1

Abb. 4: Weschnitz bei Birkenau, Besatzstrecke Wz_Bi 2.

Tab. 2: Befischungsstrecken Weschnitz 2013.

Gemeinde	Stationsnr.	Strecke (m)
Birkenau	Wz_Bi 1 - 2	300
Mörlenbach	Wz_Mö 1	120
Rimbach	Wz_Ri 1	100

Abb. 5: Naturnaher Abschnitt der Weschnitz zwischen Reisen und Mörlenbach (Lehwiese), Besatzstrecke Wz_Mö 1

Abb. 6: Begradigter Abschnitt auf Höhe der Martin-Luther-Schule in Rimbach, Besatzstrecke Wz_Ri 1

Abb. 7: Befischungsstrecken Weschnitzinsel 2019

Besatz- und Befischungsstrecken 2019

Die Reproduktionskontrolle fand am 18.7.2019 in drei Teilstrecken der unteren Weschnitz statt (Gesamtstrecke 1120 m):

- Ausleitung Alte Weschnitz (390 m)
- Vereinigte Renaturierungsstrecke am Postweg (450 m)
- Ausleitung Neue Weschnitz (280 m)

Abb. 8: Besatzstrecken Weschnitzinsel 2019-2021

Besatz- und Befischungsstrecken 2020

In 2020 erfolgte keine Kontrolle einer natürlichen Reproduktion. Der Besatz erfolgte erneut auf dem Gebiet der "Weschnitzinsel" im Bereich der Furt unterhalb der Ausleitung der alten Weschnitz.

Eine Besatzkontrolle fand am 15.09.2020 in drei Teilstrecken statt (Gesamtlänge 720 m):

- Ausleitung Alte Weschnitz (250 m)
- Vereinigte Renaturierungsstrecke am Postweg (300 m)
- Ausleitung Neue Weschnitz (170 m)

Besatz- und Befischungsstrecken 2021

In 2021 erfolgte ebenfalls keine Kontrolle einer natürlichen Reproduktion. Der Besatz erfolgte wieder auf dem Gebiet der "Weschnitzinsel" im Bereich der Furt unterhalb der Ausleitung der alten Weschnitz.

Eine Besatzkontrolle fand am 20.09.2021 an den gleichen Lokalitäten wie im Vorjahr statt (Gesamtlänge 700 m).

Besatz- und Befischungsstrecken 2022

Auch in 2022 erfolgte keine Kontrolle einer natürlichen Reproduktion. Der Besatz erfolgte erstmals im Ortsbereich von Einhausen westlich der A 67. Hier waren in den Vorjahren diverse Strukturaufwertungen durchgeführt worden (Abb. 9). Die Besatzkontrolle fand am 6.10.2022 an den besetzten sechs Lokalitäten statt.

Abb. 9: Besatzstrecken Weschnitz 2022 (Fotos und Grafik: Rainer HENNINGS)

Elektrobefischungen

2013

Die Weschnitz wurde am 17. Oktober 2013 an vier Lokalitäten zwischen Birkenau und Rimbach Ortsmitte auf insgesamt 520 m Strecke watend stromaufwärts elektrisch befischt (ein Anodenführer, zwei Beifänger).

Verwendet wurde ein Gleichstrom-Elektrofischereigerät EFGI 650 der Firma Bretschneider mit Ringanode (ø 30 cm); die Lachse wurden entnommen und in ihrer Totallänge in Milimetern vermessen. Entkommene, jedoch zweifelsfrei identifizierte Lachse wurden in ihrer Anzahl notiert.

Die Elektrobefischung erfolgte in den in Tab. 2 aufgeführten Strecken.

2019

Die Weschnitz wurde am 18. Juli 2019 an drei Lokalitäten auf der Weschnitzinsel auf insgesamt 1120 m Strecke watend stromaufwärts elektrisch befischt (zwei Anodenführer, zwei Beifänger).

Verwendet wurden zwei Gleichstrom-Elektrofischereigeräte EFGI 650 der Firma Bretschneider mit Ringanode (ø 30 cm); die gefangenen Fische wurden entnommen und in ihrer Totallänge in Zentimetern vermessen.

2020

Die Besatzkontrolle an der Weschnitz erfolgte am 15.09.2020 an drei Lokalitäten auf einer Strecke von insgesamt 720 m. Gefischt wurde watend mit Gleichstrom-Elektrofischerei-geräten Brettschneider EFGI 650 der Fa. (Ringanode Ø 30 cm) und einem Beifänger. gefangenen Die Lachse wurden kurz zwischengehältert und in ihrer Totallänge (cm) vermessen.

2021

Die Besatzkontrolle an der Weschnitz erfolgte am 20.09.2021 auf einer Strecke

von insgesamt 700 m. Gefischt wurde wieder watend mit zwei Gleichstrom-Elektrofischereigeräten EFGI 650 der Fa. Brettschneider (Ringanode ø 30 cm) und zwei Beifängern. Die gefangenen Lachse wurden kurz zwischengehältert und in ihrer Totallänge (cm) vermessen. Der restliche Fischbestand wurde ebenfalls protokolliert (vgl. Tab. 5).

2022

Die Besatzkontrolle an der Weschnitz erfolgte am 6.10.2022 auf einer Strecke von insgesamt 800 m. Gefischt wurde watend mit einem Gleichstrom-Elektrofischereigeräte EFGI 650 der Fa. Brettschneider (Ringanode ø 30 cm) und einem Beifänger. Ein gefangener Lachs wurde nach Totallänge (cm) vermessen.

2023

Im Jahr 2023 erfolgte kein Besatz und keine Kontrollbefischung

2024

Der Besatz im Jahr 2024 erfolgte am 2. März 2024 mit abwanderbereiten Smolts. Eine Kontrollbefischung war nicht beauftragt (das Abwanderverhalten wurde jedoch in Wisper und Schwarzbach untersucht).

3. Besatzmaßnahmen

3.1. Besatz 2013

In 2013 wurden am 22. August rund 4.500 Lachs-Sömmerlinge aus der Elternfischhaltung des Lachszentrums Hasper Talsperre (EFH Hessen / Rheinland-Pfalz) eingesetzt (Tab. 3, Abb. 10):

Besatz Weschnitz 22.8.2013

4.500 Lachse AK 0+

Länge 4,0 - 8,0 cm (ø 5,5 cm TL)

Gesamtgewicht: 8,5 kg Stückgewicht: 1,8 - 2,2 g

Die Erbrütung und Anfütterung bzw. Aufzucht der Lachse fand in der Fischzucht Hasper Talsperre statt. Eine erste Charge der Lachse wurde aus logistischen Gründen (Verringerung der Transportkosten) zunächst am Vormittag im Schwarzbach ausgebracht; die zweite Charge wurde nachmittags an den Schwarzbach transportiert (Transporte und Besatz jeweils durch BFS). Dabei kam es zu keinerlei Verlusten.

Die Besatzfische wurden auf vier Lokalitäten mit folgenden Ausprägungen verteilt:

- Birkenau auf Höhe Sohlengleite
 Tuchbleiche (renaturiert, moderate
 Fließgeschwindigkeit)
- Birkenau auf Höhe Schule (begradigt, moderate Fließgeschwindigkeit)
- Mörlenbach auf Höhe der Lehwiese (naturnah, kurze, flache Rauschen)

 Rimbach auf Höhe Schule (begradigt, stark durchströmt, grobes Substrat).

Tab. 3: Besatzzahlen Weschnitz 2013.

Gemeinde	Stationsnr.	Besatzzahl
Birkenau	Wz_Bi 1	1.400
Dirkeriau	Wz_Bi 2	840
Mörlenbach	Wz_Mö 1	1.400
Rimbach	Wz_Ri 1	860

Das Besatzmaterial in 2013 war von guter Qualität, jedoch wegen des "langen Winters" und der verlängerten Inkubationszeit vom Herbst 2012 bis Mai 2013 lediglich moderat abgewachsen. Die Besatzdichte lag bei ca. 1 Indiv./m².

Abb. 10: Besatz Weschnitz 2013: Tuchbleiche in Birkenau

3.2. Besatz 2019

Der Besatz 2019 erfolgte am 7. August mit rund 2.000 Lachs-Sömmerlingen aus der Elternfischhaltung des Lachszentrums Hasper Talsperre (EFH Hessen / Rheinland-Pfalz):

Besatz Weschnitz 7.8.2019

2.000 Lachse AK 0+

Länge 4,0 - 8,0 cm (ø 5,5 cm TL)

Gesamtgewicht: 4,0 kg

Stückgewicht: 1,8 - 2,2 g {ø 2,0 g}

Die Erbrütung und Anfütterung bzw. Aufzucht der Lachse fand in der Fischzucht Hasper Talsperre statt. Die Besatzcharge wurde aus logistischen Gründen (Verringerung der Transportkosten) zunächst am Vormittag an der Wisper übernommen (Transport durch J. BUTLER) und in zwei Transportcontainern von R. HENNINGS und dem BFS an die Weschnitz transportiert. Dabei kam es zu keinerlei Verlusten. Die Besatzfische wurden auf fünf Lokalitäten verteilt (Abb. 11b). Die Wassertemperatur betrug am Besatztag 19,9°C.

Die Besatzfische waren qualitativ in einem hervorragenden Zustand (vgl. Abb. 11a).

Abb. 11a: Besatz Weschnitz 2019: Besatzlachse der AK 0+

Abb. 11b: Lachsbesatz Weschnitz, 7.8.2019

3.3 Besatz 2020

Am 27.06.2020 wurden insgesamt 1.200 Lachs-Sömmerlinge (AK 0+) mit einem Durchschnittsgewicht von 0,87 g ausgesetzt. Die Erbrütung und Anfütterung bzw. Aufzucht der Lachse fand wieder im Lachszentrum Hasper Talsperre statt.

Besatz Weschnitz 27.06.2020

1.200 Lachse AK 0+

Gesamtgewicht: 1,044 kg

Stückgewicht: ø 0,87 g

Länge: 4,0 - 6,5 cm TL, ø 5,0 cm

Die Besatzcharge wurde aus logistischen Gründen (Verringerung der Transportkosten) zunächst am Vormittag an der Wisper übernommen (Transport durch J. BUTLER) und in zwei Transportcontainern von R. HENNINGS und dem BFS an die Weschnitz transportiert. Dabei kam es zu keinerlei Verlusten. Die Besatzfische wurden auf zwei Lokalitäten verteilt (Abb. 12). Die Qualität der Besatzfische war sehr gut.

Abb. 12: Lachsbesatz Weschnitz, 27.6.2020

3.4 Besatz 2021

Der Besatz im Jahr 2021 erfolgte am 10.7.2021². Die Besatzcharge wurde wieder aus logistischen Gründen (Verringerung der Transportkosten) zunächst an der Wisper übernommen (Transport ab dem Lachszentrum Hasper Talsperre durch J. BUTTLER) und in einem Transportcontainer des BFS an die Weschnitz transportiert. Dabei kam es zu keinerlei Verlusten. Die ca. 1.110 Besatzfische wurden wieder auf zwei Lokalitäten um die Furt auf der Weschnitzinsel verteilt (Abb. 13).

Die Qualität der Besatzfische im Jahr 2021 war sehr gut.

Besatz Weschnitz 10.07.2021

1.110 Lachse AK 0+

Gesamtgewicht: ca. 2,0 kg

Stückgewicht: ø 1,8 g

Länge: 5,5-7,0 cm TL, ø 6,0 cm

Abb. 13: Lachsbesatz Weschnitz, 10.7.2021

² Sämtliche Besatzmaßnahmen wurden durch RAINER HENNINGS aktiv unterstützt.

3.5 Besatz 2022

Der Besatz im Jahr 2022 erfolgte am 23.7.2022³. Die Besatzcharge wurde wieder aus logistischen Gründen (Verringerung der Transportkosten) zunächst an der Wisper übernommen (Transport ab dem Lachszentrum Hasper Talsperre durch J. BUTTLER) und in einem Transportcontainer an die Weschnitz transportiert. Dabei kam es zu keinerlei Verlusten. Die ca. 800 Besatzfische wurden auf sechs Lokalitäten in der Renaturierungsstrecke in Einhausen verteilt (Abb. 14; siehe auch Karte und Fotos, Abb. 9).

Die Qualität der Besatzfische im Jahr 2022 war erneut sehr gut.

Abb. 14: Lachsbesatz Weschnitz, 23.7.2022 (Foto: Rainer HENNINGS)

Besatz Weschnitz 23.07.2022

800 Lachse AK 0+

Gesamtgewicht: ca. 1,3 kg

Stückgewicht: ø 1,63 g

Länge: 5-7 cm TL, ø 6,0 cm

³ Sämtliche Besatzmaßnahmen wurden durch RAINER HENNINGS aktiv unterstützt.

3.6 Besatz 2024

Der Besatz im Jahr 2024 erfolgte am 02.03.2024⁴. Die Besatzcharge wurde zur Verringerung der Transportkosten gemeinsam mit den Besatzfischen für die Wisper und den Schwarzbach transportiert. Der Transport ab dem Lachszentrum Hasper Talsperre erfolgte durch J. BUTTLER. Dabei kam es zu keinerlei Verlusten. Die ca. 2.400 Besatzfische wurden an einer Lokalität (Kiesdepot) in Einhausen besetzt (Abb. 15; siehe auch Karte und Fotos, Abb. 9, Punkt 1).

Abb. 15: oben: Besatzstelle Einhausen Kiesdepot (Foto: Rainer HENNINGS) unten: Lachsbesatz Weschnitz, 02.03.2024 (Foto: Timo Seufert)

Besatz Weschnitz 02.03.2024

2.400 Lachse AK 1

Gesamtgewicht: ca. 60,0 kg

Stückgewicht: ø 25,0 g

Länge: 14-19 cm TL, ø 16 cm

Die Qualität der Besatzfische im Jahr 2024 war erneut sehr gut.

⁴ Sämtliche Besatzmaßnahmen wurden durch RAINER HENNINGS aktiv unterstützt.

4. Ergebnisse Erfolgskontrollen

4.1 Befischungen 2013

Am Befischungstag war der Abfluss leicht erhöht. Dies bedeutete insbesondere für die Strecke in Birkenau, die durch auf der Sohle liegende Blocksteine und eingetiefte Abschnitte charakterisiert ist, einen eingeschränkten Befischungserfolg. Die Fangzahlen sind entsprechend der zwischen den Strecken unterschiedlichen Fangwahrscheinlichkeit zu interpretieren.

Insgesamt wurden 182 juvenile Lachse gefangen und detailliert gemessen, weitere 40 Individuen entkamen und wurden als sichere Sichtung notiert. Tab. 4 fasst die erhobenen Daten zusammen.

Tab. 4: Nachweiszahlen und Standardlängen der Lachse AK 0+, Weschnitz 2013.

Nachweise Lachs AK	0+	
Stationsnr./Lokalität	Strecke	
Wz_Bi 1-2	84	300
Wz_Mö 1	80	120
Wz_Ri 1	58	100
Gesamtergebnis	222	520
Stationsnr./Lokalität	Daten	Ergebnis
Wz_Bi 1-2	Maximum - SL (cm)	11,3
	Mittelwert - SL (cm)	8,1
	Minimum - SL (cm)	5,6
Wz_Mö 1	Maximum - SL (cm)	10,4
	Mittelwert - SL (cm)	7,0
	Minimum - SL (cm)	4,8
Wz_Ri 1	Maximum - SL (cm)	11,8
	Mittelwert - SL (cm)	8,8
	Minimum - SL (cm)	5,9
Gesamt: Maximum - S	L (cm)	11,8
Gesamt: Mittelwert - :	7,94	
Gesamt: Minimum - SI	4,8	

Die Abwachsleistung seit dem Besatztag (22. August) lag im Mittel bei 2,5 cm (Tab. 4; Abb. 16 a&b). Dieser ausgesprochen hohe Wert weist darauf hin, dass die Aufwuchsbedingungen für Lachse der Altersklasse 0+ in der Weschnitz hervorragend sind und dass sich die Lachse problemlos in den ausgewählten Habitaten eingenischt haben.

Abb. 16a: Lachse AK 0+ aus drei Probestrecken in der Weschnitz: mittlere Längen (oben) und Nachweise pro 100 m Strecke (unten).

Die Abwachsleistung variiert jedoch mit der Dichte und der Verfügbarkeit von Deckungsstrukturen (Abb. 16a). Während in der naturnahen, jedoch durch geringe Steinanteile charakterisierten Strecke Wz_Mö 1 die geringste Abwachsleistung und die höchste Dichte verzeichnet wurde, war in der Strecke Wz_Ri 1 – trotz des naturfernen Gewässerverlaufs – die

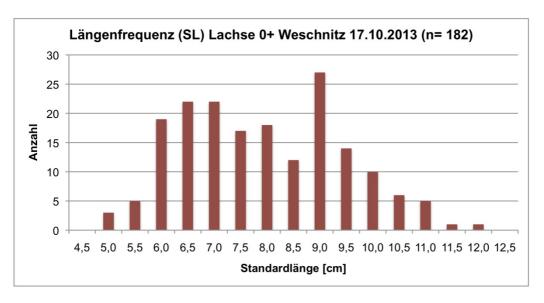


Abb. 16b: Längenfrequenz der Lachse AK 0+ aus drei Probestrecken in der Weschnitz

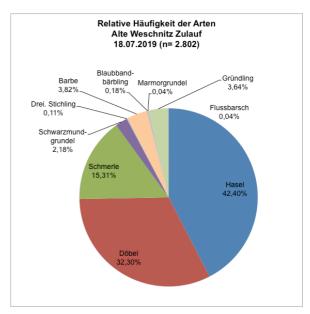
Abwachsleistung am höchsten. In der Strecke Wz Ri 1 wurden zudem hohe Dichten angetroffen, was vorwiegend auf die hohen Anteile grobschottrigen Sohlmaterials zurückzuführen sein dürfte. Die Strecken in Birkenau (Wz_Bi 1-2) weisen ebenfalls sehr gute Abwachsleistungen auf. Die Dichte bzw. Überlebensrate kann wegen Befischungsbedingungen schwierigen nicht verlässlich eingeschätzt werden; sie liegt jedoch zweifelsfrei höher, als es die Nachweiszahlen ausdrücken.

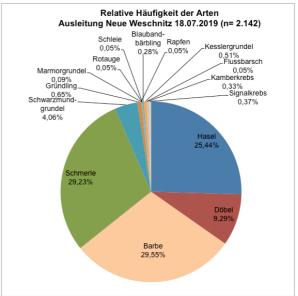
Die Überlebensrate dürfte in Anlehnung an die hohen Nachweiszahlen und die verzeichneten Dichten insgesamt bei deutlich über 50% liegen. Hierbei ist zu berücksichtigen, dass die Besatzfische als Sömmerlinge bereits rund 2 g / Stück wogen, in einem hervorragenden Zustand waren und lediglich zwei Monate zwischen

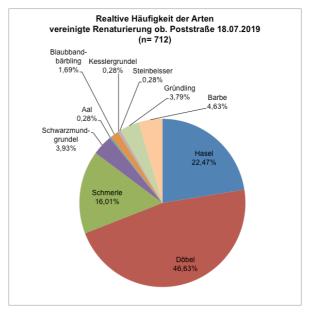
der Besatzmaßnahme und der Erfolgskontrolle lagen.

Abb. 17: Hervorragend abgewachsene Lachse der AK 0+ aus der Weschnitz am 17.10.2013 (oben), Aufwuchshabitat (unten). Fotos: GORDON BOCK

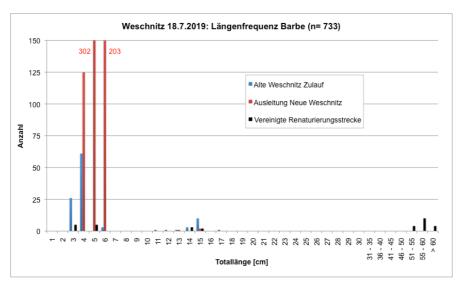
Gemäß der sich bereits andeutenden bimodalen Längenverteilung (Abb. 16) ist zu erwarten, dass rund die Hälfte der in 2013 eingebrachten Lachse die Weschnitz im Frühjahr 2014 als dann einjährige Smolts verlassen haben. Diese Einschätzung bezieht sich auf Individuen ≥ 8 cm Standardlänge. Die kleineren Individuen werden im Frühjahr 2015 als zweijährige Smolts emigriert sein.

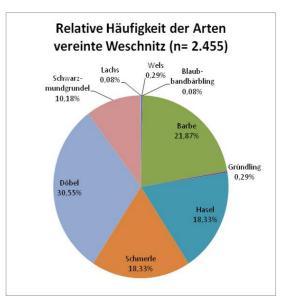

Insgesamt haben sich damit die ausgewählten repräsentativen Besatzstrecken als gut bis sehr gut geeignet für das Aufwachsen von Lachsen der Altersklasse 0+ erwiesen. Damit ist davon auszugehen, dass die obere Weschnitz insgesamt als Aufwuchsgewässer für Lachse geeignet ist.


4.2 Befischungen 2019


In den drei Teilstrecken der unteren Weschnitz (Weschnitzinsel) wurden am 18.7.2019 insgesamt 5.656 Individuen dokumentiert (Abb. 18). Lachse oder andere Salmoniden wurden nicht vorgefunden.

Die vereinigte Renaturierungsstrecke oberhalb Postraße wies bereits eine umfangreiche Neubesiedlung auf.


Relativ häufig war die Barbe (insbesondere Ausleitung Neue Weschnitz), wobei adulte Individuen ausschließlich in den tieferen Bereichen der strukturreichen Renaturierungsstrecke angetroffen wurden (Abb. 19).


Abb. 18: Relative Anteile der Fischarten der unteren Weschnitz im Sommer 2019

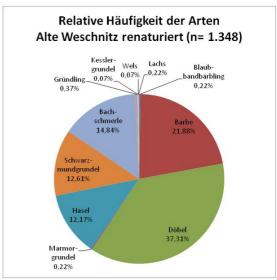


Abb. 19: Längenfrequenzen der Barbe in den drei Teilstrecken


4.3 Befischungen 2020

Wie in 2019 wurden auch in 2020 die drei Teilabschnitte der renaturierten Weschnitz (Weschnitzinsel) elektrisch befischt. Dabei wurden fünf Lachse der AK 0+ nachgewiesen. Außer den fünf vermutlich aus Besatz stammenden -Lachsen wurden keine weiteren Salmoniden angetroffen. Auf einer Gesamtlänge von 720 m Befischungsstrecke wurden insgesamt 4.932 Individuen von 12 Arten dokumentiert (Abb. 20). Der Döbel war mit insgesamt 1.949 Individuen am häufigsten vertreten, gefolgt von der Barbe (n= 1.140) und dem Hasel (n= 700). Erstmals wurde der Wels dokumentiert (n= 8). Dieser scheint sich in der renaturierten Weschnitz auch bereits erfolgreich zu reproduzieren.

Abb. 20a: Relative Anteile der Fischarten der unteren Weschnitz im Sommer 2020

Abb. 20b: Relative Anteile der Fischarten der unteren Weschnitz im Sommer 2020

4.4 Befischungen 2021

Die Kontrollbefischungen in 2021 erfolgten an den gleichen Lokalitäten wie im Vorjahr. Dabei wurden 3 Lachse (8, 9 und 10 cm TL) dokumentiert (Abb. 22). Außer den drei - vermutlich aus Besatz stammenden - Lachsen der AK 0+ wurden keine weiteren Salmoniden angetroffen. Die häufigsten Arten bildeten Hasel (Jungfische), Schwarzmundgrundel und Schmerle (Abb. 21; Tab. 5)

Abb. 21: Relative Anteile der Fischarten der unteren Weschnitz im Sommer 2021

Lachse der AK 1+ wurden nicht gefunden; aufgrund der guten Wachstumsbedingungen in der unteren Weschnitz dürfte diese Altersklasse bereits fast vollständig abgewandert sein.

Insgesamt wurden 16 Welse registriert, wovon fünf Individuen zwischen 70 und 110 cm TL und einige mittelgroße Exemplare entnommen wurden (Abb. 22).

Abb. 22: Lachse der AK 0+ aus der unteren Weschnitz im Sommer 2021. Die AK 1+ wurde nicht angetroffen.

Abb. 23: Welse mit TL 70-110 cm aus der unteren Weschnitz im Sommer 2021

Länge cm	Aal	Barbe	Blau- band- bärbling		Fluss-	Gründ- ling	Hasel			Rotauge	Schmer- le	Schwarz- mund- grundel	Stein- beißer	Wel
1														
2														
3		3												
4		10								1	1	150		
5		4	5				100				1	100		
6		7					2				50	100		
7		1					150			5	20	110		
8		120	10	3		12	530	1	1	1	30	50	1	
9							200	1			100	1		
10		3		2	3	2	160	1	1	1	70			
11				2			100							
12				15					1			1		
13														
14				2			2							
15				20			20					2		
16				2			2					1		
17				1			1							
18				2			2							
19				1			1							
20		3		2			2							
21				1			1							
22				5			5							
23				4			4							
24				_										
25				2			2							
26 27				1			1							
							1							
28				1			1							
30				1			1							
31 - 35				1			1							
36 - 40														
41 - 45	1													
41 - 45 46 - 50	1													
51 - 55														
56 - 60														
61 - 65														
66 - 70														
71 -75														
76 - 79														
80	2													
90														
100														
110														
	2	151	15	67	2	1.0	1207	2	-	c	272	F1F	4	
Summe	3	151	15	67	3	14	1287	3	3	8	272	515	1	

4.5 Befischungen 2022

Die Kontrollbefischungen in 2022 erfolgten an den Besatzlokalitäten im Ortsbereich von Einhausen (vgl. Abb. 9). Dabei wurde am 6.10.2022 auf rund 800 m Strecke lediglich ein Lachs der AK 0+ registriert (Abb. 24). Der Nachweis gelang direkt unterhalb der Brücke der A 67. Der Parr maß 7,8 cm Standardlänge (9,2 cm Totallänge) und war in hervorragendem Zustand.

Die geringe Nachweiszahl ist auch auf erschwerte Befischungsbedingungen wie Trübung, leicht erhöhter Wasserstand und örtlich hohe Tiefenvarianz (als Folge der Renaturierung) zurückzuführen.

Abb. 24: Lachs der AK 0+ aus der Weschnitz in Einhausen am 6.10.2022. Die AK 1+ wurde nicht angetroffen.

Bei der Befischung in Einhausen wurde lediglich ein Wels dokumentiert. Unter den weiteren Fängen fanden sich zudem u.a. ein Aal, eine Nase der AK 1+ sowie rund 20 juvenile Barben (AK 1+ und 2+) sowie Schmerlen, Gründlinge, Hasel und Döbel

in verschiedenen Altersklassen. Weitere Salmoniden wurden nicht registriert.

Zusammenfassung und Empfehlungen

Die Ergebnisse der vorgenommenen Erfolgskontrolle der Besatzmaßnahme 2013 zeigen auf, dass:

- die obere Weschnitz über sehr gut geeignete Aufwuchshabitate verfügt
- die Einnischung von Lachs-Sömmerlingen in allen repräsentativen Teststrecken möglich ist
- hohe bis sehr hohe Dichten erreicht werden können
- ausgesprochen gute Wachstumsleistungen zu erzielen sind.

Damit kann nach gegenwärtiger Kenntnislage eine Weiterführung und (hinsichtlich Besatzumfang und Streckennutzung) Ausdehnung des Wiederansiedlungsprojektes in der oberen Weschnitz uneingeschränkt empfohlen werden.

Mögliche Besatzzahlen obere Weschnitz

Bei einer mittleren Gewässerbreite von ca. 5 m und 11.000 m Lauflänge ergeben sich rechnerisch rund 22.000 m² bzw. 2,2 ha Aufwuchsgebiet für die Altersklasse 0+ und rund 44.000 m² bzw. 4,4 ha Aufwuchsgebiet für ältere Lachse. Die Anzahl potenzieller Laichplätze beläuft sich auf rund 35 bis 40 Lokalitäten. Die Anzahl an

Laichplätzen und die Ausdehnung der Junglachshabitate (AK 0+) kann im Rahmen von Renaturierungen nochmals deutlich erhöht werden.

Bei Sömmerlingsbesatz (AK 0+) kann ein Individuum pro m² Auswuchshabitat als geeignete Besatzdichte angesetzt werden (mögliche Besatzzahl 20.000 bis 25.000 Sömmerlinge). Rund 2,2 ha verfügbare Habitatfläche (aktueller Stand) lassen eine jährliche Smoltproduktion von ca. 2.200 Individuen zu.

Habitatmaßnahmen

Die <u>Priorisierung der notwendigen</u>
Renaturierungs- und Wehrumgestaltungsmaßnahmen ist HENNINGS (2012) zu
entnehmen. Sie entspricht auch den
Anforderungen an die Umsetzung eines
Lachswiederansiedlungsprojektes (vgl.
SCHNEIDER, 2012g).

Besatzerfolg 2019 bis 2022

Von den am 27.06.2020, 10.7.2021 und 23.7.2022 besetzten Sömmerlingen konnten lediglich fünf bzw. drei bzw. ein Individuen wiedergefangen werden. Auch wenn die Weschnitz im Unterlauf kein optimales Lachshabitat bietet, ist eine derart geringe Anzahl auffällig. Die AK 0+ verzeichnete zum Befischungszeitpunkt eine Gesamtlänge um die 9,0-10,5 cm TL und war somit gut abgewachsen. Bei dieser Abwachsleistung scheidet ein Mangel an Nahrung aus. Es ist damit zu

rechnen, dass die Abwanderung ganz überwiegend schon als AK 1 erfolgt. Die AK 1+ aus den Besatzmaßnahmen in 2019 bis 2021 wurde jeweils nicht vorgefunden.

In der Weschnitz sind zwar relativ viele Grundeln und zunehmend auch große Welse potenzielle als Fressfeinde angetroffen worden, jedoch könnte auch die Wassertemperatur einen wichtigen Faktor darstellen (vor allem im Hitzejahr 2022). Wassertemperaturen über 18°C bis 20°C bedeuten für Lachse Temperaturstress; eine Wassertemperatur von über 25 °C kann sich letal auf die Salmoniden auswirken. Eine langzeitliche Kontrolle der Wassertemperaturen über die Sommermonate wird daher empfohlen. Anhand der gewonnenen Daten könnte man mögliche Temperaturextreme erkennen ausschließen. Grundsätzlich wäre eine Verbesserung der Beschattungssituation an den Ufern der unteren Weschnitz (Weschnitzinsel) erforderlich. Da auch in den kommenden Jahren eher mit geringen Abflüssen zu rechnen ist und die Weschnitz eine eher geringe Fließgeschwindigkeit aufweist, ist ohne eine ausreichende Beschattung von einer Verschärfung der Temperaturproblematik auszugehen.

Die Bestandsentwicklung des Welses (Silurius glanis) sollte ebenfalls beobachtet werden. Mit dem Wels befindet sich ein sehr effektiver und großer Prädator in der Weschnitz, der von den

aktuellen Umweltbedingungen wandel) wahrscheinlich erheblich profitiert und auch sehr große Individuen von Fischen und Wasservögeln erbeuten massive Zunahme kann. Eine Welsbestände – auch im unmittelbaren Mündungsgebiet - könnte sich negativ auf die Projektziele auswirken. In anderen Projektgewässern (so zum Beispiel der Wisper und der Lahn) wurden bereits zurückkehrende adulte Lachse charakteristischen Bissverletzungen von Welsen angetroffen. Allgemein häufen sich die Hinweise von Welsattacken auf Lachs-Rückkehrer. Je geringer der Fluchtradius, je höher scheint Prädationserfolg von Welsen auf andere Fische zu sein. Aufzeichnungen an der Garonne zeigen, dass dort innerhalb einer Aufstiegsperiode (Jahr 2016) 35% der aufsteigenden Lachse allein in einer Fischaufstiegsanlage erbeutet wurden. Da Weschnitz einen eher die kleinen Wanderkorridor bereitstellt, könnte hier das Risiko einer Prädation deutlich größer sein als in freien Fließstrecken des Rheins.

Das Thema Prädation durch den Wels wird ausführlich im Supplement Rückkehrer diskutiert.

Ein weiteres Defizit ist die noch sehr geringe Verfügbarkeit von sogenannten In-Stream – Deckungsstrukturen im neu geschaffenen Gewässerverlauf der Weschnitzinsel (vgl. Abb. 25). Die Strukturqualität und die Struktur-

verfügbarkeit könnten durch gezieltes Einbringen von Strukturelementen (z.B. Einzelsteine, Totholz) erhöht werden. Auch das Einbringen weiterer Kiesdepots dürfte im Hinblick auf Deckungsstrukturen und der Entwicklung von Laichhabitaten für Lachse zielführend sein.

Insgesamt erscheint die 2022 gewählte Besatzstrecke in Einhausen strukturell etwas geeigneter als der Abschnitt um die Weschnitzinsel. Auch der Wels war (Stand 2022) dort weniger häufig als im Unterlauf.

Abb. 25: In der unteren Weschnitz im Bereich Weschnitzinsel wurden Strukturdefizite identifiziert.

6. Elternfischhaltung

Gemeinsam mit dem Lachszentrum Hasper Talsperre e.V. (HAT) wurde im Zeitraum 2013 bis 2024 der Aufbau der gemeinsamen hessisch - rheinland-pfälzischen Lachs-Elternfischhaltung (nach Aussetzen im Jahr 2011) durchgeführt.

In 2021 wurden 45 Wildlinge der AK 0+ (Herkunft Nister) in die Quarantäne an der HAT überführt.

In 2022 konnten in den Teilprojekten nur in Elzbach (n= 4) und Nister (n≤ 34) Lachse als *mögliche* Wildfische angesprochen werden.

Am 8.12.2022 wurde eine Befischung in der Nister unterhalb der unpassierbaren Wasserkraftanlage in Heuzert durchgeführt. Hier waren bei Rückkehrerkontrollen am 29.11.2022 überraschend juvenile Lachse der Altersklasse 0+ festgestellt worden. Der Gewässerabschnitt liegt rund 300 - 500 m oberhalb einer Besatzlokalität und es besteht die begründete Vermutung, dass die Lachse im oberen Abschnitt nicht auf eine Zuwanderung aus dem unteren Abschnitt stammen. Um dies 711 verifizieren und die Elternfischanwärter genetisch zu inventarisieren wurden bei den entnommenen Lachsen Gewebeproben (Adipose) genommen; diese wurden von Chris BRIDGES am 15.12.2022 an der Uni Koblenz-Landau zur Analyse abgegeben.

Nach dem Fang und der Probennahme wurden die Lachse von Frank STEINMANN an das Lachszentrum Hasper Talsperre überführt, wo sie zunächst in Quarantäne gehalten wurden.

Genetische Untersuchungen der Uni Landau kamen zu dem Ergebnis, dass es sich bei den 0+ Lachsen aus der Nister mehrheitlich um Besatzfische handelt. Es ist zu betonen, dass die entnommenen Lachse dennoch vollständig in die Elternfischhaltung integriert werden können, denn die Besatzfische im unteren Abschnitt stammten von abgestreiften Rückkehrern aus der Sieg ab und damit nicht aus dem Genpool der Elternfischhaltung in der HAT.

In 2023 wurden wegen fehlender Nachweise von Wildlachsen ausschließlich Nachkommen von abgestreiften Sieg-Rückkehrern in die Nachzucht der HAT aufgenommen.

In 2024 hat die HAT die Aufnahme von Wildlachsen in ein Quarantänebecken abgelehnt. Die Zusammensetzung der Elternfischhaltung ist zudem nach Angaben der Betreiber zwischenzeitlich verändert worden, in dem Fische integriert wurden, über deren Herkunft man keine Auskunft geben wolle. Aus fachlicher Sicht sollte daher der Bezug von Besatzfischen mit ungeklärter genetischer Zusammensetzung aus der HAT zeitnah beendet werden.

7. Zitierte und verwendete Literatur

- Aas, Ø., Klemetsen, A., Einum, S., & Skurdal, J. (2010). Atlantic Salmon Ecology. Wiley-Blackwell, 496 pp.
- Baldner, L. (1666): Vogel-, Fisch- und Thierbuch. - Straßburg. Faksimile-Druck 1974, Müller und Schindler, Stuttgart.
- Beland, K.F., Jordan, R.M. & Meister, A.L. (1982): Water depth and velocity preferences of spawning Atlantic salmon in Maine rivers. North Am. J. Fish. Mngmt 2, 11-13.
- Bley, P.W. (1987): Age, growth, and mortality of juvenile Atlantic salmon in streams: a review. U.S. Fish Wildl. Serv., Biol. Rep. 87(4): 25 pp.
- Borne, M. v.d. (1883): Die Fischereiverhältnisse des Deutschen Reiches, Oestereich-Ungarns, der Schweiz und Luxemburgs. Moeser, Berlin.
- Bürger, F. (1926): Die Fischereiverhältnisse im Rhein im Bereich der preußischen Rheinprovinz. Zeitschrift für Fischerei 24: 217-398.
- Consuegra, S.; Verspoor, E.; Knox, D.; Garcia Leaniz, C. de (2005): Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. In: Conservation Genetics 6 (5), S. 823–842.
- Dosch, L. (1899): Die Fischwasser und die Fische im Großherzogtum Hessen. Gießen: Verlag von Emil Roth.
- Einum, S. & Fleming, I.A. (2000): Selection against late emergence and small offspring in Atlantic salmon (*Salmo salar*). Evolution 54(2): 628-639.
- Fleming, I.A. (1996): Reproductive strategies of Atlantic salmon: ecology and evolution. Rev. Fish Biol. 6: 379-416.
- Fleming, I.A. (1998): Pattern and variability in the breeding system of Atlantic salmon (*Salmo salar*), with comparisons to other salmonids. Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 59-76.
- Gibson, R.J. (1993): The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biology and Fisheries 3: 39-73.

- Gibson, R.J. & Cutting, R.E. [eds] (1993): The production of juvenile Atlantic salmon, *Salmo* salar, in natural waters. Can. spec. Publ. Fish. Aquat. Sci. 118: 262 pp.
- Gobs, C. (1986): "Biblis. Geschichte einer Gemeinde 836-1986". Biblis: Gemeinde Biblis.
- Groot, S.J. de (1989): Literature survey into the possibility of restocking the river Rhine and its tributaries with Atlantic salmon (*Salmo salar*). - RIVO report: MO 88-205/89.2, Ijmuiden, The Netherlands, 56 pp.
- Heggberget, T.G. (1988): Timing of spawning in Norwegian Atlantic salmon (*Salmo salar*). Can. J. Fish. Aquat. Sci. 45: 845-849.
- Hennings, R. (1996a): Die Fischbestände der Ried-Weschnitz und ihrer Nebenzuläufe von der Bergstraße. Eine Gesamtuntersuchung in den Jahren 1990- 1995. - Rainer Hennings, Fischökologische Untersuchung Weschnitz-System, Teil 1. Heppenheim: Landkreis Bergstraße.
- Hennings, R. (1996b): Die Fischbestände der Weschnitz und ihrer Nebenzuläufe im Odenwald. Eine Gesamtuntersuchung in den Jahren 1990-1995. Heppenheim; Kreis Bergstraße, unveröff. Ms..
- Hennings, R. (2007): Bericht über die Fischökologische Untersuchung Westlicher Odenwald und Nachbargebiete 2007 Artgutachten 2007. Im Auftrag des Landes Hessen, Hessen-Forst FENA, 174 S. (überarbeitete Fassung März 2010).
- Hennings, R. (2012): Visualisierung und Priorisierung von Maßnahmen zur Umsetzung der Europäischen Wasserrahmenrichtlinie in den Einzugsgebieten von Weschnitz und Winkelbach Teil 1-4. FISHCALC© Büro für Fischereiberatung, Fürth i. Odenwald.; Studie im Auftrag des Gewässerverbandes Bergstraße, 60 S.
- Hennings, R. & Arnold, J. (2012): Die Wandersalmoniden in der Weschnitz sind wieder da spontan, ohne Besatz! AFZ-Fischwaid 3/2012, S. 32-33.
- Hynes, H.B.N. (1970): The Ecology of Running Waters. - Toronto (Univ. Toronto Press), 555 pp.
- Illies, J. (1961): Versuch einer allgemeinen bio-zönotischen Gliederung der Fließgewässer. Int. rev. Ges. Hydrobiol. 46: 205-213.

- Ingendahl, D. (1999): Der Reproduktionserfolg von Meerforelle (*Salmo trutta*L.) und Lachs (*Salmo salar* L.) in Korrelation zu den Milieubedingungen des hyporheischen Interstitials. - Dissertation, Hundt Druck, Köln, 157 pp.
- Ingendahl, D. & Neumann, D. (1996):
 Possibilities for successful reproduction of reintroduced salmon in tributaries of the River Rhine. Arch. Hydrobiol. Suppl. 113 Large Rivers 10, 1-4: 333-337.
- Jones, J.W. (1959): The salmon Collins, London.
- Kennedy, G.J.A. & Johnston, P.M. (1986): A review of salmon (*Salmo salar* L.) research in the River Bush. - In Crozier, W.W. & Johnston, P.M. [eds]: Proc. 17th Ann. Study Course, Inst. Fish. Mgmt. 1986. Univ. Ulster at Coleraine (1986), pp. 49-69.
- Korte, E., Berg, T., Brunzel, S., Gimpel, K., Hugo, R., Kalbhenn, U., Hennings, R. & Winkler, J. (2007): Grunddatenerfassung zu Monitoring und Management von FFH-Gebieten 2007 Oberlauf der Weschnitz und Nebenbäche (6318-307). Studie im Auftrag des Regierungspräsidiums Darmstadt; Riedstadt, 119 S.
- Korte, E. & Lelek, A. (1998): Fischanfall in den Kühlwasserentnahme- und Reinigungsanlagen des KKW der RWE-Energie AG, KW Biblis. - Forschungsinstitut Senckenberg, Sekt. Ichthyologie II & Fischökologie, 15.4.1998; Frankfurt am Main.
- Lauterborn, R. (1903): Beiträge zur Fauna und Flora des Oberrheins und seiner Umgebung. I.Teil. Mitteilungen der Pollichia 15: 42-130.
- Mac Crimmon, H.R. & Gots, B.L. (1979): World distribution of Atlantic salmon, *Salmo* salar. - J. Fish. Res. Bd. Canada 36: 422-457.
- Mills, D. (1989): Ecology and Management of Atlantic salmon. - London, New York (Chapman & Hall), 351 pp.
- Mills, D. [ed] (1991): Strategies for the rehabilitation of salmon rivers. Proceedings of a Joint Conference held at the Linnean Society 1990. The Chameleon Press, London; 211 pp.
- Nemitz, A. & Molls, F. (1999): Anleitung zur Kartierung von Fließstrecken im Hinblick auf ihre Eignung als Besatzorte für 0+ Lachse (*Salmo salar* L.). LÖBF, Beiträge aus den Fischereidezernaten, Heft 4.

- Netboy, A. (1968): The Atlantic salmon A vanishing species? Faber & Faber, London, 457 pp.
- Netboy, A. (1980): Salmon the world most harassed fish. - A. Deutsch Ltd., London, 304 pp.
- Nielsen, E.E. (2002): Results of DNA analyses of Ätran F2 broodstock. - Danish Institute for Fisheries Research, Dept. of Inland Fisheries, Silkeborg, 2pp.
- Nielsen, E.E; Hansen, M.M; Bach, L.A (2001): Looking for a needle in a haystack: discovery of indigenous Atlantic salmon (Salmo salar L.) in stocked populations. In: Conservation Genetics 2 (3), S. 219–232.
- Niepagenkemper, O. & Meyer, E. (2003):
 Messungen der Sauerstoffkonzentration in
 Flusssedimenten zur Beurteilung von
 potenziellen Laichplätzen von Lachs und
 Meerforelle. Landesfischereiverband
 West-falen und Lippe e.V. (Hrsg.); Münster,
 87 pp.
- Olsén, K.H; Petersson, E.; Ragnarsson, B.; Lundqvist, H.; Jarvi, T. (2004): Downstream migration in Atlantic salmon (Salmo salar) smolt sibling groups. In: Canadian Journal of Fisheries and Aquatic Sciences 61 (3), S. 328–331.
- Schmidt, G.W. (1996): Wiedereinbürgerung des Lachses *Salmo salar* L. in Nordrhein-Westfalen Allgemeine Biologie des Lachses sowie Konzeption und Stand des Wiedereinbürgerungsprogramms unter besonderer Berücksichtigung der Sieg. Landesanstalt f. Ökologie, Bodenordnung und Forsten / Landesamt f. Agrarordnung NRW, LÖBF-Schriftenreihe, 11 (1996).
- Schneider, J. (1998a): Habitatwahl juveniler Atlantischer Lachse (*Salmo salar* Linné, 1758) in ausgewählten Besatzgewässern in Rheinland-Pfalz. Z. Fischk. 5(1), 77-100.
- Schneider, J. (1998b): Zeitliche und räumliche Einnischung juveniler Lachse (*Salmo salar* Linnaeus, 1758) allochthoner Herkunft in ausgewählten Habitaten. Verlag Natur und Wissenschaft, Solingen; 218 pp.
- Schneider, J. (2001): Restocking the Rhine which non-native salmon stocks could be the better source? Biological considerations and first experiences. in: El Salmón, Joya de Nuestros Rios. Garcia de Leaniz, C; Serdio, A. & Consuegra, S. (eds.); Gobierno de Cantabria, Santander, pp. 125-134.

- Schneider, J. (2002): Zur ursprünglichen Laichzeit des Sieglachses und Stammauswahl bei der Wiedereinbürgerung. - Fischer & Teichwirt 8/2002, 304-307.
- Schneider, J. (2005): Der Lachs kehrt zurück -Stand der Wiederansiedlung in Rheinland-Pfalz. - Ministerium f. Umwelt und Forsten (Hrsg); Mainz, 64 pp.
- Schneider, J. (2007): Eignungsprüfung der Mainzuflüsse Schwarzbach und Wickerbach für eine Ansiedlung des Atlantischen Lachses (*Salmo salar* L.). Studie im Auftrag des Landes Hessen. Frankfurt am Main, 33 pp.
- Schneider, J. (2008): Erfassung der Fischfauna und Prüfung einer Besiedlung durch den Atlantischen Lachs (*Salmo salar* L.) im Mainzufluss Schwarzbach. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 34 pp.
- Schneider, J. (2009a): Ökologische Vorgaben für Sohlengleiten. in: DWA –Themen Naturnahe Sohlengleiten; Kap. 4; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, DWA; Hennef, p. 29-49.
- Schneider, J. (2009b): Fischökologische Gesamtanalyse einschließlich Bewertung der Wirksamkeit der laufenden und vorgesehenen Maßnahmen im Rheingebiet mit Blick auf die Wiedereinführung von Wanderfischen. Bericht Nr. 167, Internationale Kommission zum Schutz des Rheins (IKSR), 165 pp.
- Schneider, J. (2011): Review of reintroduction of Atlantic salmon (*Salmo salar*) in tributaries of the Rhine River in the German Federal States of Rhineland-Palatinate and Hesse. J. Appl. Ichthyol. 27 (Suppl. 3) (2011): 24–32.
- Schneider, J. (2012a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel und der Wieslauter sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. Endbericht 2012; Frankfurt a. M., 103 pp.

- Schneider, J. (2012b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2012. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 55 pp.
- Schneider, J. (2012c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) – Bericht 2012. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 31 pp.
- Schneider, J. (2012d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2012. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 43 pp.
- Schneider, J. (2012e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase IV, 2. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 59 pp.
- Schneider, J. (2012f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2012. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 51 pp.
- Schneider, J. (2012g): Eignungsprüfung der hessischen Weschnitz für eine Wiederansiedlung des Atlantischen Lachses (*Salmo salar*). - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 33 pp.
- Schneider, J. (2012h): Erfolgskontrolle der Wiedereinbürgerung von Lachs (Salmo salar L.) und Meerforelle (Salmo trutta L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase V, Endbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 110 pp.
- Schneider, J. (2013a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (Salmo salar L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 1.
 Zwischenbericht 2013; Frankfurt a. M., 97 pp.

- Schneider, J. (2013b): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Wisper (Hessen) – Bericht 2013. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 58 pp.
- Schneider, J. (2013c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) – Bericht 2013. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 33 pp.
- Schneider, J. (2013d): Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2013. - Studie im Auftrag des Landes Hessen. Frankfurt a. M., 44 pp.
- Schneider, J. (2013e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase IV, 3. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 62 pp.
- Schneider, J. (2013f): Wiederansiedlung der Meerforelle (Salmo trutta) im Gewässersystem der Nidda (Hessen) 2013. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 56 pp.
- Schneider, J. (2013g): Erfolgskontrolle einer Initialbesatzmaßnahme mit Atlantischen Lachsen (Salmo salar) in der hessischen Weschnitz. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 28 pp.
- Schneider, J. (2013h): Erfolgskontrolle der Wiedereinbürgerung von Lachs (Salmo salar L.) und Meerforelle (Salmo trutta L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VI, 1. Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 78 pp.
- Schneider, J. (2014a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (Salmo salar L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 2. Zwischenbericht 2014; Frankfurt a. M., 101 pp.
- Schneider, J. (2014b): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Wisper (Hessen) – Bericht 2014. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 65 pp.

- Schneider, J. (2014c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2014. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 38 pp.
- Schneider, J. (2014d): Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2014. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 53 pp.
- Schneider, J. (2014e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase IV, Endbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 78 pp.
- Schneider, J. (2014f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2014. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 71 pp.
- Schneider, J. (2014g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (Salmo salar L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VI, 2.
 Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 88 pp.
- Schneider, J. (2014f): Fischökologische Bewertung der Planung zum zweiten Einstieg in das Umgehungsgerinne des WKW Kostheim am Main - aktualisierte Planung Mai 2014. - Stellungnahme im Auftrag der WKW Staustufe Kostheim/Main GmbH & Co. KG.; BFS-Frankfurt.
- Schneider, J. (2015a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 3.

 Zwischenbericht 2015; Frankfurt a. M., 119 pp.
- Schneider, J. (2015b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2015. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 68 pp.

- Schneider, J. (2015c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) Bericht 2015. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 42 pp.
- Schneider, J. (2015d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2015. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 60 pp.
- Schneider, J. (2015e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 1. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 75 pp.
- Schneider, J. (2015f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2015. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 80 pp.
- Schneider, J. (2015g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (Salmo salar L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VI, 3.
 Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 89 pp.
- Schneider, J. (2016a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. Endbericht 2016; 130 pp.
- Schneider, J. (2016b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2016. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 74 pp.
- Schneider, J. (2016c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) Bericht 2016. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 43 pp.

- Schneider, J. (2016d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2016. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 66 pp.
- Schneider, J. (2016e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 2. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 81 pp.
- Schneider, J. (2016f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2016. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 89 pp.
- Schneider, J. (2016g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (*Salmo salar* L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VI, Endbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 103 pp.
- Schneider, J. (2017a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 1. Zwischenbericht 2017; 151 pp.
- Schneider, J. (2017b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2017. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 77 pp.
- Schneider, J. (2017c): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Gewässersystem der Kinzig (Hessen) Bericht 2017. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 48 pp.
- Schneider, J. (2017d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2017. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 69 pp.

- Schneider, J. (2017e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 3. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 91 pp.
- Schneider, J. (2017f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2017. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 98 pp.
- Schneider, J. (2017g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (*Salmo salar* L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VI, 1.
 Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 102 pp
- Schneider, J. (2018a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 2. Zwischenbericht 2018; 173 pp.
- Schneider, J. (2018b): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Wisper (Hessen) – Bericht 2018. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 73 pp.
- Schneider, J. (2018c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2018. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 49 pp.
- Schneider, J. (2018d): Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2018. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 66 pp.
- Schneider, J. (2018e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 4. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 90 pp.

- Schneider, J. (2018f): Wiederansiedlung der Meerforelle (Salmo trutta) im Gewässersystem der Nidda (Hessen) 2018. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 106 pp.
- Schneider, J. (2018g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (*Salmo salar* L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VII, 2.
 Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 105 pp.
- Schneider, J. (2019a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Obere Fischereibehörde. 3. Zwischenbericht 2019; 185 pp.
- Schneider, J. (2019b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2019. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 71 pp.
- Schneider, J. (2019c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2019. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 45 pp.
- Schneider, J. (2019d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2019. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 64 pp.
- Schneider, J. (2019e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 5. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 88 pp.
- Schneider, J. (2019f): Wiederansiedlung der Meerforelle (Salmo trutta) im Gewässersystem der Nidda (Hessen) 2019. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 117 pp.

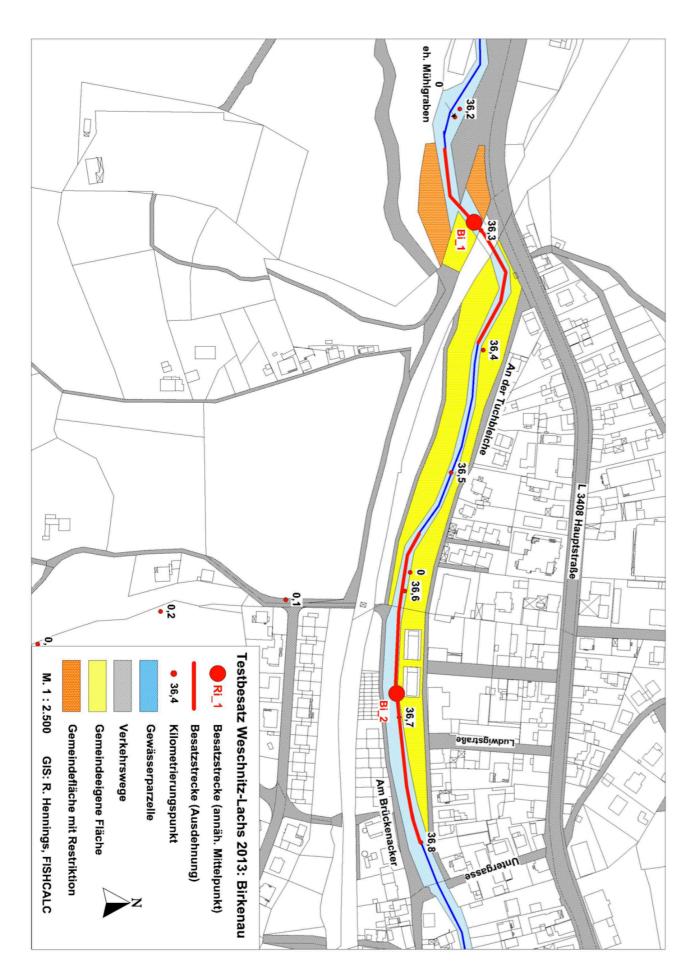
- Schneider, J. (2019g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (*Salmo salar* L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VII, 3.
 Zwischenbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 99 pp.
- Schneider, J. (2019h): Wiederansiedlung des Atlantischen Lachses in der Weschnitz (Hessen) 2019. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 32 pp.
- Schneider, J. (2020a): Erfolgskontrollen von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Mosel, der Nahe und der Wieslauter mit angrenzenden Altrheinen sowie Monitoring der spontanen Wiederbesiedlung der Nette Lachs 2020 in Rheinland-Pfalz. Studie im Auftrag der Struktur- und Genehmigungsdirektion Süd, Obere Fischereibehörde. Endbericht; 192 pp.
- Schneider, J. (2020b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2020. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 70 pp.
- Schneider, J. (2020c): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Gewässersystem der Kinzig (Hessen) Bericht 2020. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 46 pp.
- Schneider, J. (2020d): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2020. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 66 pp.
- Schneider, J. (2020e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 6. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 96 pp.
- Schneider, J. (2020f): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2020. Studie im Auftrag des Landes Hessen. Frankfurt am Main, 123 pp.

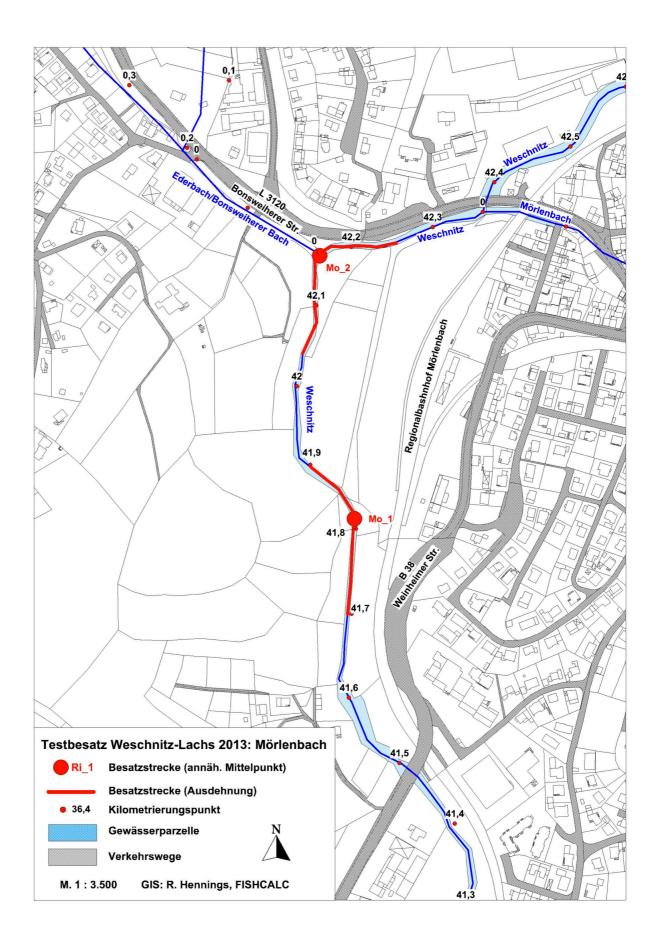
- Schneider, J. (2020g): Erfolgskontrolle der Wiedereinbürgerung von Lachs (*Salmo salar* L.) und Meerforelle (*Salmo trutta* L.) in Sieg, Saynbach, Ahr und Lahn (Rheinland-Pfalz). Projektphase VII, Endbericht. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M.
- Schneider, J. (2020h): Wiederansiedlung des Atlantischen Lachses in der Weschnitz (Hessen) 2020. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 38 pp.
- Schneider, J. (2020i): Prüfung der Eignung des Elbbachs (Lahnsystem, Hessen) zur Wiederansiedlung des Atlantischen Lachses (*Salmo salar*). Studie im Auftrag des Regierungspräsidiums Gießen; Frankfurt am Main, 19 pp.
- Schneider, J. (2021a): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) in der Wisper (Hessen) – Bericht 2021. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 72 pp.
- Schneider, J. (2021b): Stand der Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2020. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 48 pp.
- Schneider, J. (2021c): Wiederansiedlung des Atlantischen Lachses (*Salmo salar* L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2020. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 68 pp.
- Schneider, J. (2021d): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 7. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 102 pp.
- Schneider, J. (2021e): Wiederansiedlung der Meerforelle (*Salmo trutta*) im Gewässersystem der Nidda (Hessen) 2021 Studie im Auftrag des Landes Hessen. Frankfurt am Main, 130 pp.
- Schneider, J. (2021f): Wiederansiedlung des Atlantischen Lachses in der Weschnitz (Hessen) 2021. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 39 pp.

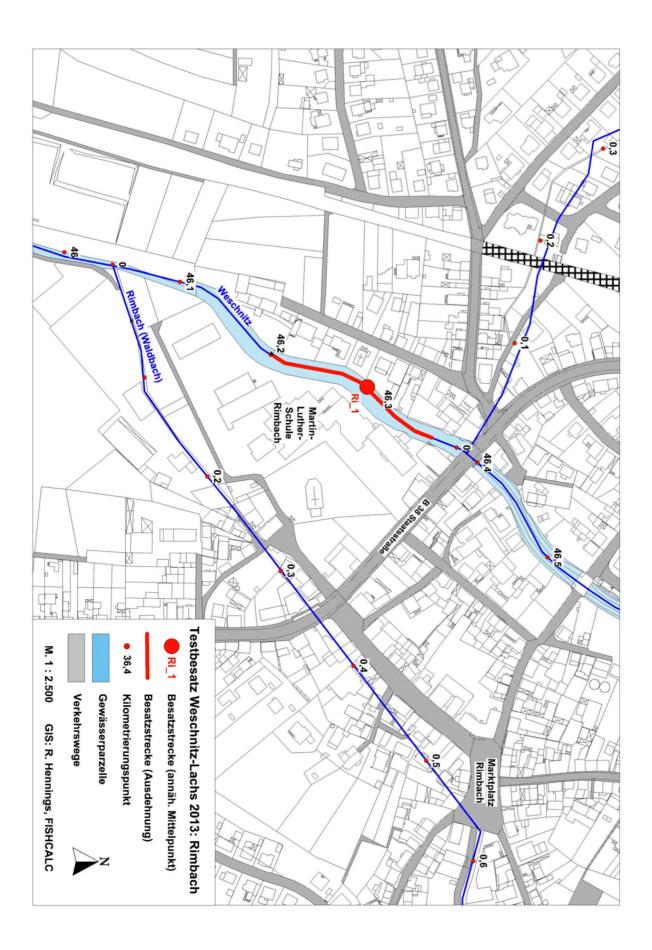
- Schneider, J. (2021g): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Nahe, des Speyerbachs und der Wieslauter Lachs 2020 in Rheinland-Pfalz. 1. Zwischenbericht 2020. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 114 S.
- Schneider, J. (2022a): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen (*Salmo salar* L.) in den Gewässersystemen der Nahe, des Speyerbachs und der Wieslauter Lachs 2020 in Rheinland-Pfalz. 2. Zwischenbericht 2021. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 123 S.
- Schneider, J. (2022b): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Wisper (Hessen) – Bericht 2022. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 73 pp.
- Schneider, J. (2022c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2022. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 48 pp.
- Schneider, J. (2022d): Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2022. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 70 pp.
- Schneider, J. (2022e): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen im Lahnsystem (Hessen). -Projektphase V, 8. Zwischenbericht. Im Auftrag des Landes Hessen. Frankfurt a. M., 104 pp.
- Schneider, J. (2022f): Wiederansiedlung der Meerforelle (Salmo trutta) im Gewässersystem der Nidda (Hessen) 2022 - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 138 pp.
- Schneider, J. (2022g): Wiederansiedlung des Atlantischen Lachses in der Weschnitz (Hessen) 2022. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 43 pp.
- Schneider, J. (2023a): Erfolgskontrolle von Besatzmaßnahmen mit Atlantischen Lachsen (Salmo salar L.) in den Gewässersystemen der Nahe, des Speyerbachs und der Wieslauter - Lachs 2040 in Rheinland-Pfalz. 3. Zwischenbericht 2023. Im Auftrag des Landes Rheinland-Pfalz. Frankfurt a. M., 132 S.

- Schneider, J. (2023b): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) in der Wisper (Hessen) – Bericht 2023. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 75 pp.
- Schneider, J. (2023c): Stand der Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Gewässersystem der Kinzig (Hessen) - Bericht 2023. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 50 pp.
- Schneider, J. (2023d): Wiederansiedlung des Atlantischen Lachses (Salmo salar L.) im Mainzufluss Schwarzbach – Ergebnisse der Erfolgskontrolle 2023. - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 71 pp.
- Schneider, J. (2023e): Wiederansiedlung des Lachses im hessischen Lahnsystem. . Tätigkeitsbericht 2023. - Im Auftrag des Landes Hessen. Frankfurt a. M., 14 pp.
- Schneider, J. (2023f): Wiederansiedlung der Meerforelle (Salmo trutta) im Gewässersystem der Nidda (Hessen) 2023 - Studie im Auftrag des Landes Hessen. Frankfurt am Main, 143 pp.
- Schneider, J. & Lelek, A. (1996):
 Erfolgskontrolle der Wiedereinbürgerung
 von Lachs (Salmo salar L.) und Meerforelle
 (Salmo trutta L.) in Sieg und Saynbach
 (Rheinland-Pfalz). Endbericht einer
 ichthyologischen Untersuchung des
 Forschungsinstituts Senckenberg im Auftrag
 des Landes Rheinland-Pfalz. Frankfurt a.
 M., 60 pp.
- Schneider, J. & Jörgensen, L. (2004): Salmo salar für die Nette Ansätze einer eigenständigen Wiederbesiedlung der Nette (Rheinland-Pfalz) durch Atlantische Lachse. AFZ-Fischwaid 5/2004, S. 16-17.
- Schneider, J., Jörgensen, L., Molls, F., Nemitz, A., Köhler, C. & Blasel, K. (2004): Notwendigkeit und konzeptionelle Ausrichtung eines effektiven Monitorings bei der Lachswiederansiedlung im Rhein das Monitoring-Einheiten-Konzept. Fischer & Teichwirt, 2/2004.
- Schneider, J. & Korte, E. (2004): Letale Vergrämung von Kormoranen im Einzugsgebiet der rheinland-pfälzischen Sieg und Nister. Studie im Auftrag der Struktur- und Genehmigungsdirektion Nord, Koblenz. Frankfurt a. M., 55 pp.

- Schneider, J., Hübner, D. & Korte, E. (2012): Funktionskontrolle der Fischaufstiegs- und Fischabstiegshilfen sowie Erfassung der Mortalität bei Turbinendurchgang an der Wasserkraftanlage Kostheim am Main Endbericht 2012. Studie im Auftrag der WKW Staustufe Kostheim/Main GmbH & Co. KG. Bürogemeinschaft für fisch- und gewässerökologische Studien BFS; Frankfurt a. Main, 150 pp. + Annex.
- Schneider, J. & Hübner D. (2014): Funktionskontrolle der Fischwechselanlagen am Main-Kraftwerk Kostheim. – WasserWirtschaft 7/8 2014, S. 54-59.
- Schneider, J. & Krau, F. (2012): Ableitung von Mindest-Populationsgrößen für den Lachs im Flussgebiet Weser in Nordrhein-Westfalen. Studie im Auftrag des Landesamts für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen; Frankfurt am Main und Lübeck, 92 pp.
- Schneider, J. & Seufert, T. (2019): Echolotbasiertes Monitoring an Main und Rhein 2019. - BFS; Frankfurt a. Main, 31. S.
- Schneider, J. & Seufert, T. (2020): Mortalitätsratenstudie Lachsperimeter Schweiz (Perimeter I). - Studie im Auftrag des WWF Schweiz, Frankfurt a. M., 166 pp.
- Schneider, J., Hübner, D. & Seufert, T. (2021): Prüfung der Eignung der Dill (Lahnsystem, Hessen) zur Wiederansiedlung des Atlantischen Lachses (Salmo salar L.). Studie im Auftrag des Regierungspräsidiums Gießen; BFS Frankfurt und Marburg, 78 S.
- Schneider, J. & Seufert, T. (2021):
 Wissenschaftliche Begleituntersuchungen
 der Wiederansiedlung von LangdistanzWandersalmoniden Jahresbericht 2021. Studie im Im Auftrag des Landes RheinlandPfalz, SGD Nord; Frankfurt a. M., 35 S.
- Schneider, J. & Seufert, T. (2022):
 Wissenschaftliche Begleituntersuchungen
 der Wiederansiedlung von LangdistanzWandersalmoniden Jahresbericht 2022. Studie im Im Auftrag des Landes RheinlandPfalz, SGD Nord; Frankfurt a. M., 23 S.
- Schneider, J. & Seufert, T. (2023):
 Wissenschaftliche Begleituntersuchungen
 der Wiederansiedlung von LangdistanzWandersalmoniden Jahresbericht 2023. Studie im Im Auftrag des Landes RheinlandPfalz, SGD Nord; Frankfurt a. M., 24 S.


- Schneider, J. & Seufert, T. (2024):
 Erfolgskontrolle von Besatzmaßnahmen mit
 Atlantischen Lachsen (Salmo salar L.) in
 den Gewässersystemen der Nahe, des
 Speyerbachs und der Wieslauter Lachs
 2040 in Rheinland-Pfalz. Endbericht 2023.
 Im Auftrag des Landes Rheinland-Pfalz.
 Frankfurt a. M., 133 S.
- Schneider, J., Seufert, T., Vonlanthen, P., Dönni, W. & Fricke, R. (2024): Evaluierung der Bestands-entwicklung der Lachspopulationen im Rheineinzugsgebiet. Studie im Auftrag der Internationalen Kommission zum Schutz des Rheins IKSR; Frankfurt am Main, Cordast, Luzern, und Marburg, 102 S. zuzgl. Anhänge I-V.Schwevers, U. (1998): Die Biologie der Fischabwanderung. Verlag Nat. und Wiss., Solingen, Bd. 11, 84 pp.
- Seiler, H. (1999): Zur Geschichte der Lachsfischerei im Bezirk Trier insbesondere zu deren Niedergang und Ende. mit einer Auflistung von potentiellen Laichplätzen und Jungfischhabitaten für Lachse in Zuflüssen der Mosel im Bezirk Trier. Unter Mitarbeit von Lothar Kroll. Trier.
- Stewart, D. C.; Middlemas, S. J.; Youngson, A. F. (2006): Population structuring in Atlantic salmon (Salmo salar): evidence of genetic influence on the timing of smolt migration in sub-catchment stocks. In: Ecology of Freshwater Fish 15 (4), S. 552–558.
- Thiel, R.; Magath, V. (2011): Populationsdynamik diadromer Fischarten: Atlantischer Lachs, Meerforelle, Meerneunauge, Flussneunauge und Europäischer Aal. UBA Texte 76/2011. Hg. v. Umweltbundesamt, Dessau-Roßlau.
- Thorpe, J.E. (1981): Migration in salmonids, with special reference to juvenile movements in fresh water. In: Brannon, E.L. & Salo, E.O. [eds]: Salmon and Trout Migratory Behaviour Symposium. School of Fisheries, University of Washington, Seattle, pp. 86-97.
- Thorpe, J.E. (1988): Salmon migration. Sci. Progr., Oxford 72: 345-370.
- Thorpe, J.E. (1994a): Reproductive strategies in Atlantic salmon, *Salmo salar* L. Aquaculture Fish. Mgmt. 25: 77-87.
- Thorpe, J.E. (1994b): Significance of straying in salmonids and implications for ranching. Aquacult. Fish. Mgmt. 25 (Suppl. 2): 183-190.


- van de Ven, M. (2021): Telemetric Study on the Migration of Salmon Smolts in the River Rhine, Cohorts 2018-2020. – Concept | Report Number 20191133/02, assigned by RWS WNZ. ATKB for nature and living environment, 62 pp.
- v.d. Borne, M. (1882): Die Fischerei-Verhältnisse des deutschen Reiches, Oesterreich-Ungarns, der Schweiz und Luxemburgs, bearbeitet im Auftrage des deutschen Fischerei-Vereins durch Max von dem Borne: Moeser Hofbuchdruckerei.
- VDSF Verband Deutscher Sportfischer (Hrsg.) (2003): Lachse in Deutschland Dokumentation der Wiedereinbürgerungsprojekte des atlantischen Lachses (*Salmo salar* L.) in Deutschland. VDSF, Offenbach a.M., 135 pp.
- Verspoor, E., Stradmeyer, L. & Nielsen, J.L. (2007): The Atlantic salmon Genetics, conservation and management. Blackwell Publishing, 2007; 500 pp.
- Veselov, A.E. & Kalyuzhin, S.M. (2001): Young Atlantic salmon: Ecology, Behaviour and Distribution, Petrozavodsk, 159 pp.
- Webb, J.H. & McLay, H.A. (1996): Variation in the time of spawning of Atlantic salmon (*Salmo salar*) in relationship to temperature in the Aberdeenshire Dee, Scotland. - Can. J. Fish. Aquat. Sci. 53: 2739-2744.
- Wilkins, N.P. (1985): Salmon stocks: A Genetic Perspective. - Atlantic Salmon Trust, Pitlochry, 30 pp.
- White, H.C. (1942): Atlantic salmon redds and artificial spawning beds. J. Fish. Res. Bd. Can. 6: 37-44.


ANHANG

Karten der drei Besatzstrecken 2013

(GIS: R. HENNINGS, FISHCALC)

